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I.  INTRODUCTION 

This paper examines the results of a code project designed          
to classify musical instrument samples into a set of         
predetermined categories. The program is set in this project to          
classify between three instruments: flute, saxophone, and       
violin, although it is designed with enough generality to         
accommodate other instrument classifications as well. We       
work with two data sets, a collection of reference training          
audio files, and a collection of random testing audio files.          
Given an appropriate library of sound samples of each         
instrument to be classified, the code library performs feature         
extraction on each sample and trains a computational model.         
This model can then be used to classify any random sample of            
any length, provided it is of the same type as one of the trained              
classifier instruments. In this implementation, feature      
extraction consists of collection of MFCC coefficients, as seen         
in speech recognition applications by Do [2] as well as          
previous instrument recognition such as Weng et al.        
Previously, two methods of instrument recognition that were        
widely used are the nearest neighbor method and the Bayesian          
networks, both shown by Donnelly et al [3]. The nearest          
neighbor method (k-NN) is an instance-based learning       
algorithm that classifies a sample with the most common class          
amongst its neighbors, which are predetermined by a distance         
metric. The Bayesian network method is based on        
probabilistic graphical models and uses prior probability of a         
class as well as conditional probabilities to determine the most          
likely class label. 

For this project, we worked with two methods of         
instrument classification techniques: support vector machine      
(SVM), and convolutional neural network (CNN). The first        
method involves feature extraction using the Mel frequency        
cepstrum coefficients (MFCCs) and the second method       
involves various techniques of inputting data into the CNN.         
Both of these methods will be discussed in further detail in           
section II. 

 

 

II. METHODS 

A. Coding Environment  
Our main coding environment for this project is Matlab.         

We chose to use Matlab as it is a platform that we are             
comfortable with and we know that there are existing toolkits          
on speech recognition that we can adapt to our project. For           
this project, we integrated the code from various open sources          
to the code that we have written. The first method of this            
project makes use of an open source version of the MFCC           
feature extractor from the Hidden Markov Model Toolkit        
(HTK). The original HTK MFCC is intended for speech         
recognition application, and required several reworkings in       
order to properly handle a musical sample as opposed to          
human voice, which we will explain in section B. The MFCC           
feature vectors obtained using this method are then fed into          
the support vector machine for training. This process will be          
explained in section C. The second method involves        
cepstrograms, a type of spectrogram in the logarithmic Mel         
scale, as input to a convolutional neural network. Here, the          
Matlab Neural Network Toolkit is used, which we will further          
explain in section D. 

B. Mel Frequency Cepstrum Coefficients 
Mel frequency cepstrum coefficients are used to represent        

and characterize the power spectrum of a signal. For our          
purposes, the MFCCs are used to characterize various        
one-second-long samples of our chosen three instruments.       
These characterizations, or feature vectors, are then used to         
train our computational model. We therefore chose our        
training samples to consist of various playing styles and tones          
so as to create a more thorough and robust model. The MFCCs            
for each signal are generated as follows. 

First, the signal is windowed in the time domain.         
Windowing in the time domain increases resolution in the         
frequency domain. For each window of N samples, the         
discrete fourier transform is taken, which can be represented         
by the following equation: 

[k] [n]eX = ∑
N−1

n=0
x −j nkN

2π
 (1) 
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Fig. 1: Triangular filterbanks in Mel scale 

Once this power spectrum has been obtained, a series of          
triangular, overlapping filters is applied (Fig.1). This maps our         
power spectrum onto the Mel scale, converting our units of          
frequency from hertz to mels. This conversion is represented         
by the following equation: 

595 og (1 )m = 2 · l 10 + f
700  (2) 

 
Finally, the logarithms of the energies is taken and the discrete           
cosine transform (DCT) is applied. The purpose of the DCT is           
to compress the energy representation of the signal in a small           
number of coefficients, which in our case are a series of 13            
MFCCs. The discrete cosine transform can be represented as         
follows: 

os[ (n )k]Xk = ∑
N−1

n=0
xn · c π

N + 2
1  (3)  

The result is a set of 13 MFCCs for each window of the             
original signal. We chose to consolidate these multiple sets of          
coefficients per signal by averaging across all of the windows          
to obtain one vector of 13 MFCCs per signal. A summary of            
the MFCC feature extraction process is shown in Figure 2. 

All of this is done in our trainSVM.m file. As our code            
loops through all of our training samples and generates the          
average MFCC feature vector for each, it compiles each         
feature vector in a matrix X1 which will be used as input for             
the SVM. The vectors are arranged inside X1 such that each           
row is an observation, or audio sample, and each column is a            
predictor, or coefficient. 

 
Fig. 2: MFCC feature extraction diagram 

C. Support Vector Machine 
A support vector machine (SVM) is a supervised learning         

machine that is widely used to classify data. The SVM does           
this by using a set of training examples to define a separating            
hyperplane in order to be able to classify the data. SVMs are            
binary learners, and are commonly used for binary        
classification, but in this project, we need a multiclass SVM in           
order to classify three instruments. In this project, we decided          
to input the a series MFCC coefficients to the SVM in order to             
train it. The code for training the SVM can be found in the             
trainSVM.m file. After going through the main for loop in this           
file, there will be two variables the are generated, X1          
(explained in section B.) and Y. Y contains the labels of each            
of the observations in X1, which in our case are violin, flute,            
or saxophone (represented by the numbers 1, 2, and 3,          
respectively). This will be used by the SVM to identify what           
type of instrument each observation in X1 corresponds to. The          
code that we used to train the SVM is the fitcecoc function,            
which is preexisting in Matlab.  

To obtain results from the testing samples, we need to          
obtain the MFCCs for the testing samples in a similar way in            
which we did for the training samples. In the Classify_all.m          
file, we use the predict function in the toolkit to predict the            
posterior probability that a value (coefficient) belongs to a         
certain class. In this algorithm, the probability distribution        
function of class k is P(k). The posterior probability that          
observation x belongs to class k is defined as follows: 

 (k | x) P =  P (x)
P (x | k ) P (k)  (4) 

D. Neural Network 
An Artificial Neural Network (ANN) is an information        

processing method that operates similarly to biological       
nervous systems, such as the brain. The key element is the           
structure, a large number of highly interconnected processing        
elements (neurons) working in unison to solve specific        
problems. Our application makes use of a specific type of          
ANN, a convolutional neural network (CNN), which operates        
similarly to the visual cortex.  

A typical CNN consists of multiple layers, including        
convolutional, max-pooling and fully-connected layers. The      
most widely used neural networks have been trained to operate          
within image processing, so this explanation will focus on that          
particular type of implementation. During training, the       
network defines a set of filters, or kernels, which are small           
grids of pixel data corresponding to a specific feature. This          
kernel is convolved with the entire image, and the new matrix           
formed is called a Feature Map, where each feature map          
discovers different features based on the response of the         
convolution. Each feature map is then downsampled to        
consolidate the information. A spatial neighborhood is       
defined, and either the largest element from that window is          
taken in the case of max pooling, or the average of all the             
sums in Average Pooling. This process of convolution and         



pooling comprises one layer, and multiple layers are        
constructed with each layer input being the output of the          
previous layer.  

With each layer, more and more complex features can be          
analyzed and compared. The final step is a fully connected          
layer, which takes each layer as an input, and weights each           
based on complexity as an input to a function, called the           
Activation Function. This activation function is within a        
hidden layer, meaning it is not visible as a network output.           
The function returns probabilities as output that sum to one,          
and predict the classification of the original input image.         
Through this process, a neural network is able to apply feature           
extraction as well as classification, as shown in Figure 3. In           
the realm of audio classification, CNNs are often applied to          
images of spectrogram data, and as shown in Lee et al [] can             
equal or surpass MFCC methods. 

 
In our attempts to implement a CNN, we tested various          

methods of inputting data into the network. For this project,          
we used the default CNN Toolbox in Matlab. The source code           
that we used was from the Matlab Script provided on the           
Mathworks website. This CNN source code was written for         
image classification purposes, such as letter recognition or        
object recognition. However, we believe that we can adapt this          
method to be used with audio inputs. In order to input the            
signal to the CNN, we tried three methods: reformatting         
MFCC data, using the spectrogram, and using the cepstral         
coefficient plot. 

Since we already had the MFCC coefficients that were         
extracted from the training samples, we decided to reformat         
the coefficients into a 28x28 matrix as the first method of           
input into the CNN. We use this 28x28 matrix because this is            
the dimension that the CNN is expecting as an input. The           
function cnnMFCCInput.m creates two 4D matrices, one for        
training data and one for testing data (XTrain and XTest) and           
their corresponding label vectors (TTrain and TTest). These        
four matrices are used as inputs to the CNN. 

The second method of input to the CNN is the          
spectrogram. At first, we tried inputting the spectrogram of the          
one input sample at a time, since our samples were one second            
long. However, we realized that this would not give us the           
desired results as the testing samples vary in length, and this           
time constraint will become an area that causes an error.          
Realizing that, we decided to window the original signal then          
plot the spectrogram of each window. Even though this         
increased the computation time by a lot, we believe that it           
would yield more accurate results. After plotting the        
spectrogram of window, we converted the image to grayscale         
in order to be able to feed the data to the CNN. Lastly, we              
resized the image so that it would have a size of 28x28. This is              
done in the file cnnSpectroInput.m where the images are again          
stored in 4D matrices before they are inputted into the CNN. 

 
Fig. 3: Flowchart of CNN implementation 

 
The third method for inputting data into the CNN is the           

Mel frequency cepstrum plot. We believe that using this will          
yield the best result. This is because the Mel frequency          
cepstrum captures the characteristics of a signal and is less          
sensitive to the frequency content of the signal when         
compared to the spectrogram plot. Contrary to the spectrogram         
method, we took one Mel frequency cepstrum plot per signal.          
Before inputting this plot into the CNN, we had to convert it to             
grayscale and resize it, just as we previously did with the           
spectrogram plots. This is done in the file cnnCepstralInput.m. 

 

III. RESULTS 

E. SVM Results 
Our first method is quantitatively evaluated using an        

accuracy percentage. A label vector similar to the vector Y          
described in section C. is generated for our testing samples.          
We then compare the results from the predict function to the           
“answer key” stored in the label vector, and find how many of            
the test files were correctly identified out of the total. The           
accuracy percentage is the output of the Classify_all.m        
function. 

We found that our accuracy was higher when our test          
samples very closely resembled our training samples (both        
were from the same sound library, but no files were identical).           
This makes sense because it is much easier to find common           
features among files that have similar sonic characteristics.        
The distribution of correctly identified samples across the        
three different instruments can be seen in Figure 4 below.          
When we included test files from different sound libraries, our          
accuracy slightly dropped, but still remained at a respectable         
level. This is reasonable because since musical factors such as          
vibrato, reverb, and the amplitude envelope were no longer as          
similar to those in the training samples, the feature vectors          
derived from the test samples differed more. The distribution         
of correctly identified samples across the three different        
instruments for this case can be seen in Figure 5. 



 
Fig. 4: Chart showing SVM accuracy per instrument 

 

 
Fig. 5: Chart showing SVM accuracy per instrument 

We can see that in both cases saxophone was the instrument           
with the most incorrectly identified samples. On the other         
hand, the flute and violin samples were almost all correctly          
identified. We believe that this is partly due to the fact that            
saxophone is an instrument with many timbres. Different        
saxophones in the same family (baritone, tenor, alto, soprano)         
can sound very different. Furthermore, a player can create         
many different sounds with the saxophone through various        
playing techniques. In some test files, the similarities between         
the training saxophone sound and the training violin sound are          
clearly audible. 

A summary of the accuracy percentages for the SVM         
method is provided in Table 1. We found that other’s          
implementations of this solution yielded accuracies of around        
80% [1],[3]. Therefore we are satisfied with our results and          
consider the MFCC/SVM method successful. 

F. CNN Results 
An accuracy percentage is also used to quantitatively        

evaluate this method as well. The results for this method are           
separated into three different sections corresponding to the        
different methods we attempted: reformatting MFCC data,       
using the spectrogram plot, and using the cepstral coefficient         
plot. For all three methods, the file Classify_cnn.m takes the          
appropriate inputs and reports the accuracy percentage. 

The first method, reformatting the MFCC data gave us         
inaccurate results. After observing the output, we realized that         
the CNN is classifying all the testing samples as one          
instrument (flute). This explains the accuracy percentage of        
approximately one third. We believe this is probably because         
of incorrect formatting of the MFCC coefficients to resemble         
an image. The feature information captured by the MFCCs         
may have been distorted in this process. 

In the second method, using the spectrogram as input         
yielded improved but fairly inaccurate results as well. This         
time, the CNN output only classified input samples as either          
flute or violin, but never saxophone.  

Lastly, inputting the Mel frequency cepstrum plot gave us         
similar results to the second method. This time the CNN          
output only classified input samples as either violin or         
saxophone. For a long period of time, this exact code was           
outputting undefined results. Previously, after going through       
extensive troubleshooting of the input to the CNN, we could          
not understand why the results were undefined. If the input to           
the CNN wasn’t formatted correctly, or if the input wasn’t in           
the correct dimensions, we will not be able to run the           
algorithm as there will be an error message (asserts). Since the           
procedure for formatting the data for our Mel frequency         
cepstrum plot is very similar to the procedure of formatting          
the spectrogram data, we expected it to return a valid accuracy           
percentage.  

As a group, we believe that this method will eventually          
yield a high percentage accuracy, but we were not able to           
achieve that in the timespan of this project. Because there are           
many variables that affect the performance of the CNN such          
as the convolutional layers, max pooling, epochs, iterations,        
we think that there is an optimal number that would increase           
the performance of the system. The method that we use to           
input data to the CNN is very likely another factor that affects            
the performance. However, these are our hypotheses and there         
may be other factors involved as well. 

 

Table 1: Summary of SVM results 

 With Test Files 
Similar to Train 
Files 

With Test Files 
Different from 
Train Files 

SVM Accuracy 
Percentage 

81% 75% 

 

 

 

 

 



Table 2: Summary of CNN results 

 With Test Files 
Similar to Train 
Files 

With Test Files 
Different from 
Train Files 

CNN Accuracy 
Percentage with 
MFCC Input 

31% 32% 

CNN Accuracy 
with Spectrogram 
Input 

50% 42% 

CNN Accuracy 
with Cepstrogram 
Input 

26% 30% 

 

 

IV. CONCLUSION 

In this paper we study the effectiveness of instrument         
recognition by both SVM and CNN by use of MFCC’s as           
input alone. We obtained reasonable accuracy with our SVM         
testing, however it dropped noticeably when more       
complicated samples were provided for classification. Our       
implementation of a CNN was unable to achieve accuracy at          
the level of the SVM, however given more time to fully           
optimize the system to train and test with spectrogram inputs          
would likely greatly improve given the results obtained in the          
current state. In addition, providing more various features for         
classification would improve accuracy. Research was done       
into envelope detection in order to analyze ADSR information,         
however due to the nature of the input samples this application           
was bypassed in favor of implementing the CNN. Future         
implementations could also include more instruments to       
classify, as well as subtypes (e.g. separating alto and tenor          
saxophone). 

ACKNOWLEDGMENTS 

We would like to acknowledge Achilleas Anastasopoulos,       
our professor for the semester, for his sharing of his          
knowledge in his instruction. We also would like to         
acknowledge Nathan Sawicki, whose suggestions, advice and       
guidance was extremely instrumental in the completion of this         
project. Finally we acknowledge Kamil Wojcicki, who is the         
author of the MFCC HTK code package sourced for this          
project. 

REFERENCES 
[1] D. Bhalke, C. Rao, D. Bormane and M. Vibhute, "SPECTROGRAM          

BASED MUSICAL INSTRUMENT IDENTIFICATION USING     
HIDDEN MARKOV MODEL (HMM) FOR MONOPHONIC AND       
POLYPHONIC MUSIC SIGNALS", ACTA TECHNICA     
NAPOCENSIS, vol. 52, no. 2, p. 9, 2017. 

[2] M. Do, "DSP Mini-Project: Speaker Recognition", Ifp.illinois.edu.       
[Online]. Available:  

http://www.ifp.illinois.edu/~minhdo/teaching/speaker_recognition/. 
[Accessed: 8- Apr- 2017]. 

 
[3] P. Donnelly and J. Sheppard, "Classification of Musical Timbre Using          

Bayesian Networks", Computer Music Journal, vol. 37, no. 4, pp. 70-86,           
2013. 

[4] A. Eronen, “Automatic Musical instrument Recognition,” M.S. thesis,        
Dept. IT, Tempere University, Tampere, Finland, 2001.  

[5] J. Glover, “Sinusoids, noise and transients: spectral analysis, feature         
detection and real-time transformations of audio signals for musical         
applications,” D.P. thesis, Dept. of Music, Nat. University of Ireland,          
Maynooth, Ireland, 2012. 

[6] J. R. Jang, C. Lin and C. Weng, "Music Instrument Identification Using            
MFCC: Erhu as an Example", pdfs.semanticsscholar.org. [Online].       
Available: 
https://pdfs.semanticscholar.org/4ec7/a1c395bdc2425c7892360f8e9d81d
0c4c4a8.pdf. [Accessed: 8- Apr- 2017]. 

[7] H. Lee, Y. Largman, P. Pham and A. Ng, Unsupervised feature learning            
for audio classification using convolutional deep belief networks, 1st ed.          
Stanford, CA: Stanford University, 2009, p. 9. 

[8] J. Lyons, "Practical Cryptography", Practicalcryptography.com, 2012.      
[Online]. Available:  
http://practicalcryptography.com/miscellaneous/machine-learning/guide-
mel-frequency-cepstral-coefficients-mfccs/. [Accessed: 21- Mar- 2017]. 

[9] "An Intuitive Explanation of Convolutional Neural Networks", the data         
science blog, 2016. [Online]. Available:     
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/. 
[Accessed: 10- Apr- 2017]. 

 

 


