
Musical Instrument Recognition
EECS 351 Final Report

Sophia Mehdizadeh, Peeravich Panlertkitsakul, Timothy Kennedy
EECS 351, College of Engineering

University of Michigan
Ann Arbor, Michigan

skmehdi@umich.edu, ppanlert@umich.edu, tikenned@umich.edu

I. INTRODUCTION

This paper examines the results of a code project designed
to classify musical instrument samples into a set of
predetermined categories. The program is set in this project to
classify between three instruments: flute, saxophone, and
violin, although it is designed with enough generality to
accommodate other instrument classifications as well. We
work with two data sets, a collection of reference training
audio files, and a collection of random testing audio files.
Given an appropriate library of sound samples of each
instrument to be classified, the code library performs feature
extraction on each sample and trains a computational model.
This model can then be used to classify any random sample of
any length, provided it is of the same type as one of the trained
classifier instruments. In this implementation, feature
extraction consists of collection of MFCC coefficients, as seen
in speech recognition applications by Do [2] as well as
previous instrument recognition such as Weng et al.
Previously, two methods of instrument recognition that were
widely used are the nearest neighbor method and the Bayesian
networks, both shown by Donnelly et al [3]. The nearest
neighbor method (k-NN) is an instance-based learning
algorithm that classifies a sample with the most common class
amongst its neighbors, which are predetermined by a distance
metric. The Bayesian network method is based on
probabilistic graphical models and uses prior probability of a
class as well as conditional probabilities to determine the most
likely class label.

For this project, we worked with two methods of
instrument classification techniques: support vector machine
(SVM), and convolutional neural network (CNN). The first
method involves feature extraction using the Mel frequency
cepstrum coefficients (MFCCs) and the second method
involves various techniques of inputting data into the CNN.
Both of these methods will be discussed in further detail in
section II.

II. METHODS

A. Coding Environment
Our main coding environment for this project is Matlab.

We chose to use Matlab as it is a platform that we are
comfortable with and we know that there are existing toolkits
on speech recognition that we can adapt to our project. For
this project, we integrated the code from various open sources
to the code that we have written. The first method of this
project makes use of an open source version of the MFCC
feature extractor from the Hidden Markov Model Toolkit
(HTK). The original HTK MFCC is intended for speech
recognition application, and required several reworkings in
order to properly handle a musical sample as opposed to
human voice, which we will explain in section B. The MFCC
feature vectors obtained using this method are then fed into
the support vector machine for training. This process will be
explained in section C. The second method involves
cepstrograms, a type of spectrogram in the logarithmic Mel
scale, as input to a convolutional neural network. Here, the
Matlab Neural Network Toolkit is used, which we will further
explain in section D.

B. Mel Frequency Cepstrum Coefficients
Mel frequency cepstrum coefficients are used to represent

and characterize the power spectrum of a signal. For our
purposes, the MFCCs are used to characterize various
one-second-long samples of our chosen three instruments.
These characterizations, or feature vectors, are then used to
train our computational model. We therefore chose our
training samples to consist of various playing styles and tones
so as to create a more thorough and robust model. The MFCCs
for each signal are generated as follows.

First, the signal is windowed in the time domain.
Windowing in the time domain increases resolution in the
frequency domain. For each window of N samples, the
discrete fourier transform is taken, which can be represented
by the following equation:

[k] [n]eX = ∑
N−1

n=0
x −j nkN

2π
 (1)

mailto:ppanlert@umich.edu
mailto:skmehdi@umich.edu
mailto:tikenned@umich.edu

Fig. 1: Triangular filterbanks in Mel scale

Once this power spectrum has been obtained, a series of
triangular, overlapping filters is applied (Fig.1). This maps our
power spectrum onto the Mel scale, converting our units of
frequency from hertz to mels. This conversion is represented
by the following equation:

595 og (1)m = 2 · l 10 + f
700 (2)

Finally, the logarithms of the energies is taken and the discrete
cosine transform (DCT) is applied. The purpose of the DCT is
to compress the energy representation of the signal in a small
number of coefficients, which in our case are a series of 13
MFCCs. The discrete cosine transform can be represented as
follows:

os[(n)k]Xk = ∑
N−1

n=0
xn · c π

N + 2
1 (3)

The result is a set of 13 MFCCs for each window of the
original signal. We chose to consolidate these multiple sets of
coefficients per signal by averaging across all of the windows
to obtain one vector of 13 MFCCs per signal. A summary of
the MFCC feature extraction process is shown in Figure 2.

All of this is done in our trainSVM.m file. As our code
loops through all of our training samples and generates the
average MFCC feature vector for each, it compiles each
feature vector in a matrix X1 which will be used as input for
the SVM. The vectors are arranged inside X1 such that each
row is an observation, or audio sample, and each column is a
predictor, or coefficient.

Fig. 2: MFCC feature extraction diagram

C. Support Vector Machine
A support vector machine (SVM) is a supervised learning

machine that is widely used to classify data. The SVM does
this by using a set of training examples to define a separating
hyperplane in order to be able to classify the data. SVMs are
binary learners, and are commonly used for binary
classification, but in this project, we need a multiclass SVM in
order to classify three instruments. In this project, we decided
to input the a series MFCC coefficients to the SVM in order to
train it. The code for training the SVM can be found in the
trainSVM.m file. After going through the main for loop in this
file, there will be two variables the are generated, X1
(explained in section B.) and Y. Y contains the labels of each
of the observations in X1, which in our case are violin, flute,
or saxophone (represented by the numbers 1, 2, and 3,
respectively). This will be used by the SVM to identify what
type of instrument each observation in X1 corresponds to. The
code that we used to train the SVM is the fitcecoc function,
which is preexisting in Matlab.

To obtain results from the testing samples, we need to
obtain the MFCCs for the testing samples in a similar way in
which we did for the training samples. In the Classify_all.m
file, we use the predict function in the toolkit to predict the
posterior probability that a value (coefficient) belongs to a
certain class. In this algorithm, the probability distribution
function of class k is P(k). The posterior probability that
observation x belongs to class k is defined as follows:

 (k | x) P = P (x)
P (x | k) P (k) (4)

D. Neural Network
An Artificial Neural Network (ANN) is an information

processing method that operates similarly to biological
nervous systems, such as the brain. The key element is the
structure, a large number of highly interconnected processing
elements (neurons) working in unison to solve specific
problems. Our application makes use of a specific type of
ANN, a convolutional neural network (CNN), which operates
similarly to the visual cortex.

A typical CNN consists of multiple layers, including
convolutional, max-pooling and fully-connected layers. The
most widely used neural networks have been trained to operate
within image processing, so this explanation will focus on that
particular type of implementation. During training, the
network defines a set of filters, or kernels, which are small
grids of pixel data corresponding to a specific feature. This
kernel is convolved with the entire image, and the new matrix
formed is called a Feature Map, where each feature map
discovers different features based on the response of the
convolution. Each feature map is then downsampled to
consolidate the information. A spatial neighborhood is
defined, and either the largest element from that window is
taken in the case of max pooling, or the average of all the
sums in Average Pooling. This process of convolution and

pooling comprises one layer, and multiple layers are
constructed with each layer input being the output of the
previous layer.

With each layer, more and more complex features can be
analyzed and compared. The final step is a fully connected
layer, which takes each layer as an input, and weights each
based on complexity as an input to a function, called the
Activation Function. This activation function is within a
hidden layer, meaning it is not visible as a network output.
The function returns probabilities as output that sum to one,
and predict the classification of the original input image.
Through this process, a neural network is able to apply feature
extraction as well as classification, as shown in Figure 3. In
the realm of audio classification, CNNs are often applied to
images of spectrogram data, and as shown in Lee et al [] can
equal or surpass MFCC methods.

In our attempts to implement a CNN, we tested various

methods of inputting data into the network. For this project,
we used the default CNN Toolbox in Matlab. The source code
that we used was from the Matlab Script provided on the
Mathworks website. This CNN source code was written for
image classification purposes, such as letter recognition or
object recognition. However, we believe that we can adapt this
method to be used with audio inputs. In order to input the
signal to the CNN, we tried three methods: reformatting
MFCC data, using the spectrogram, and using the cepstral
coefficient plot.

Since we already had the MFCC coefficients that were
extracted from the training samples, we decided to reformat
the coefficients into a 28x28 matrix as the first method of
input into the CNN. We use this 28x28 matrix because this is
the dimension that the CNN is expecting as an input. The
function cnnMFCCInput.m creates two 4D matrices, one for
training data and one for testing data (XTrain and XTest) and
their corresponding label vectors (TTrain and TTest). These
four matrices are used as inputs to the CNN.

The second method of input to the CNN is the
spectrogram. At first, we tried inputting the spectrogram of the
one input sample at a time, since our samples were one second
long. However, we realized that this would not give us the
desired results as the testing samples vary in length, and this
time constraint will become an area that causes an error.
Realizing that, we decided to window the original signal then
plot the spectrogram of each window. Even though this
increased the computation time by a lot, we believe that it
would yield more accurate results. After plotting the
spectrogram of window, we converted the image to grayscale
in order to be able to feed the data to the CNN. Lastly, we
resized the image so that it would have a size of 28x28. This is
done in the file cnnSpectroInput.m where the images are again
stored in 4D matrices before they are inputted into the CNN.

Fig. 3: Flowchart of CNN implementation

The third method for inputting data into the CNN is the

Mel frequency cepstrum plot. We believe that using this will
yield the best result. This is because the Mel frequency
cepstrum captures the characteristics of a signal and is less
sensitive to the frequency content of the signal when
compared to the spectrogram plot. Contrary to the spectrogram
method, we took one Mel frequency cepstrum plot per signal.
Before inputting this plot into the CNN, we had to convert it to
grayscale and resize it, just as we previously did with the
spectrogram plots. This is done in the file cnnCepstralInput.m.

III. RESULTS

E. SVM Results
Our first method is quantitatively evaluated using an

accuracy percentage. A label vector similar to the vector Y
described in section C. is generated for our testing samples.
We then compare the results from the predict function to the
“answer key” stored in the label vector, and find how many of
the test files were correctly identified out of the total. The
accuracy percentage is the output of the Classify_all.m
function.

We found that our accuracy was higher when our test
samples very closely resembled our training samples (both
were from the same sound library, but no files were identical).
This makes sense because it is much easier to find common
features among files that have similar sonic characteristics.
The distribution of correctly identified samples across the
three different instruments can be seen in Figure 4 below.
When we included test files from different sound libraries, our
accuracy slightly dropped, but still remained at a respectable
level. This is reasonable because since musical factors such as
vibrato, reverb, and the amplitude envelope were no longer as
similar to those in the training samples, the feature vectors
derived from the test samples differed more. The distribution
of correctly identified samples across the three different
instruments for this case can be seen in Figure 5.

Fig. 4: Chart showing SVM accuracy per instrument

Fig. 5: Chart showing SVM accuracy per instrument

We can see that in both cases saxophone was the instrument
with the most incorrectly identified samples. On the other
hand, the flute and violin samples were almost all correctly
identified. We believe that this is partly due to the fact that
saxophone is an instrument with many timbres. Different
saxophones in the same family (baritone, tenor, alto, soprano)
can sound very different. Furthermore, a player can create
many different sounds with the saxophone through various
playing techniques. In some test files, the similarities between
the training saxophone sound and the training violin sound are
clearly audible.

A summary of the accuracy percentages for the SVM
method is provided in Table 1. We found that other’s
implementations of this solution yielded accuracies of around
80% [1],[3]. Therefore we are satisfied with our results and
consider the MFCC/SVM method successful.

F. CNN Results
An accuracy percentage is also used to quantitatively

evaluate this method as well. The results for this method are
separated into three different sections corresponding to the
different methods we attempted: reformatting MFCC data,
using the spectrogram plot, and using the cepstral coefficient
plot. For all three methods, the file Classify_cnn.m takes the
appropriate inputs and reports the accuracy percentage.

The first method, reformatting the MFCC data gave us
inaccurate results. After observing the output, we realized that
the CNN is classifying all the testing samples as one
instrument (flute). This explains the accuracy percentage of
approximately one third. We believe this is probably because
of incorrect formatting of the MFCC coefficients to resemble
an image. The feature information captured by the MFCCs
may have been distorted in this process.

In the second method, using the spectrogram as input
yielded improved but fairly inaccurate results as well. This
time, the CNN output only classified input samples as either
flute or violin, but never saxophone.

Lastly, inputting the Mel frequency cepstrum plot gave us
similar results to the second method. This time the CNN
output only classified input samples as either violin or
saxophone. For a long period of time, this exact code was
outputting undefined results. Previously, after going through
extensive troubleshooting of the input to the CNN, we could
not understand why the results were undefined. If the input to
the CNN wasn’t formatted correctly, or if the input wasn’t in
the correct dimensions, we will not be able to run the
algorithm as there will be an error message (asserts). Since the
procedure for formatting the data for our Mel frequency
cepstrum plot is very similar to the procedure of formatting
the spectrogram data, we expected it to return a valid accuracy
percentage.

As a group, we believe that this method will eventually
yield a high percentage accuracy, but we were not able to
achieve that in the timespan of this project. Because there are
many variables that affect the performance of the CNN such
as the convolutional layers, max pooling, epochs, iterations,
we think that there is an optimal number that would increase
the performance of the system. The method that we use to
input data to the CNN is very likely another factor that affects
the performance. However, these are our hypotheses and there
may be other factors involved as well.

Table 1: Summary of SVM results

 With Test Files
Similar to Train
Files

With Test Files
Different from
Train Files

SVM Accuracy
Percentage

81% 75%

Table 2: Summary of CNN results

 With Test Files
Similar to Train
Files

With Test Files
Different from
Train Files

CNN Accuracy
Percentage with
MFCC Input

31% 32%

CNN Accuracy
with Spectrogram
Input

50% 42%

CNN Accuracy
with Cepstrogram
Input

26% 30%

IV. CONCLUSION

In this paper we study the effectiveness of instrument
recognition by both SVM and CNN by use of MFCC’s as
input alone. We obtained reasonable accuracy with our SVM
testing, however it dropped noticeably when more
complicated samples were provided for classification. Our
implementation of a CNN was unable to achieve accuracy at
the level of the SVM, however given more time to fully
optimize the system to train and test with spectrogram inputs
would likely greatly improve given the results obtained in the
current state. In addition, providing more various features for
classification would improve accuracy. Research was done
into envelope detection in order to analyze ADSR information,
however due to the nature of the input samples this application
was bypassed in favor of implementing the CNN. Future
implementations could also include more instruments to
classify, as well as subtypes (e.g. separating alto and tenor
saxophone).

ACKNOWLEDGMENTS

We would like to acknowledge Achilleas Anastasopoulos,
our professor for the semester, for his sharing of his
knowledge in his instruction. We also would like to
acknowledge Nathan Sawicki, whose suggestions, advice and
guidance was extremely instrumental in the completion of this
project. Finally we acknowledge Kamil Wojcicki, who is the
author of the MFCC HTK code package sourced for this
project.

REFERENCES
[1] D. Bhalke, C. Rao, D. Bormane and M. Vibhute, "SPECTROGRAM

BASED MUSICAL INSTRUMENT IDENTIFICATION USING
HIDDEN MARKOV MODEL (HMM) FOR MONOPHONIC AND
POLYPHONIC MUSIC SIGNALS", ACTA TECHNICA
NAPOCENSIS, vol. 52, no. 2, p. 9, 2017.

[2] M. Do, "DSP Mini-Project: Speaker Recognition", Ifp.illinois.edu.
[Online]. Available:

http://www.ifp.illinois.edu/~minhdo/teaching/speaker_recognition/.
[Accessed: 8- Apr- 2017].

[3] P. Donnelly and J. Sheppard, "Classification of Musical Timbre Using

Bayesian Networks", Computer Music Journal, vol. 37, no. 4, pp. 70-86,
2013.

[4] A. Eronen, “Automatic Musical instrument Recognition,” M.S. thesis,
Dept. IT, Tempere University, Tampere, Finland, 2001.

[5] J. Glover, “Sinusoids, noise and transients: spectral analysis, feature
detection and real-time transformations of audio signals for musical
applications,” D.P. thesis, Dept. of Music, Nat. University of Ireland,
Maynooth, Ireland, 2012.

[6] J. R. Jang, C. Lin and C. Weng, "Music Instrument Identification Using
MFCC: Erhu as an Example", pdfs.semanticsscholar.org. [Online].
Available:
https://pdfs.semanticscholar.org/4ec7/a1c395bdc2425c7892360f8e9d81d
0c4c4a8.pdf. [Accessed: 8- Apr- 2017].

[7] H. Lee, Y. Largman, P. Pham and A. Ng, Unsupervised feature learning
for audio classification using convolutional deep belief networks, 1st ed.
Stanford, CA: Stanford University, 2009, p. 9.

[8] J. Lyons, "Practical Cryptography", Practicalcryptography.com, 2012.
[Online]. Available:
http://practicalcryptography.com/miscellaneous/machine-learning/guide-
mel-frequency-cepstral-coefficients-mfccs/. [Accessed: 21- Mar- 2017].

[9] "An Intuitive Explanation of Convolutional Neural Networks", the data
science blog, 2016. [Online]. Available:
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/.
[Accessed: 10- Apr- 2017].

