
Adaptive Speakers: Listening Made Better
EECS 452 Final Report

Sophia Mehdizadeh, Jack Nonnenmacher, Socrates Papageorgiou, Abdulrahman Shehadeh
EECS 452, College of Engineering

University of Michigan
Ann Arbor, Michigan

skmehdi@umich.edu, jnonno@umich.edu, sdkpapag@umich.edu, aboodsh@umich.edu

Abstract—This paper examines the development of an adaptive
speaker system. Our objective was to create a prototype that was
completely modular, allowing the users to connect their own
speakers and microphone, and control the system via a mobile
application that could be downloaded to their own device. The
product was implemented using a Raspberry Pi 3 and two
STM32 Nucleo F7 boards. The success of the system was
measured qualitatively through user feedback, and quantitatively
by looking at frequency-domain metrics.

I. INTRODUCTION

For many years, architects and engineers have struggled to
design and build acoustically “perfect” concert halls and
musical venues. The goal of these spaces is to allow sound to
travel from the source (musician) to the listener as intact and
untampered as possible. However, the design and construction
of these spaces is extremely long, arduous, and expensive, and
must be customized for each building shape and location.
Realistically, because a single sound source might result in
hundreds of sound wave reflections within a space (Fig. 1), it
is extremely difficult for a sound to exist in a physical space
without being impacted by that space [6][7]. This impact has
most commonly been noticed in terms of reverberation. Large,
empty rooms produce echoes, while heavily carpeted and
furnished rooms absorb sound. However, not all frequencies
are reflected or absorbed equally. The structure and
arrangement of a space significantly impacts which
frequencies are boosted or attenuated, and by how much.
These environmental filters make it extremely difficult for the
average listener to experience clear, undistorted audio. Our
solution to this problem is not to eliminate these filters by
creating acoustically “perfect” listening spaces, but rather to
develop a product that can identify these filters and negate
them by adjusting its audio output accordingly.

Fig. 1: Simulation of sound reflection in a space

Fig. 2: Overhead view of example room layout (symbolic)

Fig. 3: Low-level system diagram

Our adaptive speaker system creates a more clear and

authentic listening experience by canceling out the filtering
effects of the listening environment. This negation is done by
comparing what the listener hears to the original audio file. A
microphone placed at the location of the listener (Fig. 2) picks
up the room-filtered audio and sends it to a Nucleo F7
microprocessor (Fig. 3). The Nucleo then uses a digital signal
processing (DSP) algorithm to determine the differences
between room-filtered audio and the original audio file being
sent to the speakers. This DSP algorithm will be discussed
more in section IV. In the case that the user would like to
directly customize their audio, a mobile application allows the
user to add certain effects and filters, and choose between
preset levels. The user interface and data transmission to the
rest of the system will be discussed in section II.

II. USER INTERFACE

A. Mobile Application
The purpose of having a phone application is to let the user

connect to the system via bluetooth and make custom changes
to the audio by applying the available effects such as filters,
delay or distortion. By choosing one of the eight available
presets of pre-programmed effects, the slider of each

1

mailto:skmehdi@umich.edu
mailto:jnonno@umich.edu
mailto:sdkpapag@umich.edu
mailto:aboodsh@umich.edu

corresponding effect will automatically move to its chosen
value; the user could turn on or off each individual effect by
toggling on or off each effect’s switch (Fig. 4). Swift is the
official programming language of iOS development and was
used to develop the application’s functionality, graphical user
interface (GUI), and the bluetooth connection. Xcode was
used as the integrated development environment (IDE) for its
similar affiliation to iOS development. The phone application
establishes a connection with the Raspberry Pi by using
Bluetooth Low Energy technology.

B. Bluetooth Low Energy
We chose to use Bluetooth Low Energy (BLE) technology

for our system since it is ideal for situations where small data
are being transferred for a long period of time. BLE is
well-suited for providing fast transfer of small data while
saving a lot of the device’s battery. A BLE Profile consists of
several services, with various characteristics for each service
(Fig. 5). Characteristics contain a value, which is what the
central either reads from, or writes to. Therefore a single
characteristic may only be a read or a write characteristic, and
should be defined by the peripheral before any connection
occurs. Services act as a holder for characteristics that share
similar functionality, or provide a single service. Both services
and characteristics are defined by a 128-bit universally unique
identifier (UUID) that describes a service or characteristic
provided by an electronic device. A device that provides
services and characteristics is called a peripheral, which in our
case is the phone or other mobile device. A device that reads
services and reads or writes characteristics is called a central.
The Raspberry Pi was assigned the central role because it will
communicate with all of the system’s devices: the phone and
the two Nucleo boards. The central will detect the peripheral’s
service(s) only when the peripheral advertises the desired
service(s) [1].

Fig. 4: Mobile application to select desired effects and presets

Fig. 5: Bluetooth Low Energy Profile Hierarchy

C. Peripheral Bluetooth Handling

For the peripheral (mobile device), the CoreBluetooth
library was used in Xcode which provides the classes needed
for the app to communicate with BLE wireless devices. We
desired only one service that will hold two characteristics, a
read and a write characteristic. To do that, three variables must
be initialized to hold the 128-bit UUID (randomly generated
and assigned) of each service and of the characteristic. These
variables must be defined as constants because it is very
crucial that they never change. This process is done by writing
the following lines of code at the beginning of the executable
file (Swift defines a constant variable by using the reserved
keyword “let:”):

et service_uuid "e20a39f4 3f5 bc4 12f 7d1ad07a961"l = = − 7 − 4 − a − 1

et read_char_uuid "08590f7e b05 67e 757 2f6faeb13d4" l = − d − 4 − 8 − 7

et write_char_uuid "886570b6 e41 1e8 467 ed5f89f718b" l = − 2 − 1 − b − 0

Next, three other variables need to be declared that will be

the actual service and the two characteristics. These variables
are objects of “CBMutableService” and
“CBMutableCharacteristic” classes [2], respectively. While
calling the constructor of the characteristic variable, the
characteristic’s UUID needs to be passed with a property that
specifies whether this characteristic is a read or write. For the
service variable constructor however, only the service’s UUID
has to be passed. As a final step, it is possible to assign
characteristics to a specific service by calling the service
object's member variable “characteristic” and passing the
desired characteristics in an array, using the following code:

ransferService.characteristics [readCharacteristic!, writeCharacteristic!]; t =

Finally, the service needs to start advertising at the

application startup. Reading from and writing to a
characteristic is straightforward, and is done by using the
following two functions from the library [2]:

2

unc peripheralManager(_ peripheral CBP eripheralManager, f :

 didReceiveW rite requests [CBAT T Request]) :

unc peripheralManager(_ peripheral CBP eripheralManager, f :

 didReceiveRead requests [CBAT T Request]) :

It is important to note that all of the data transferred were
formatted in hexadecimal, because the BLE protocol enforces
the use of hexadecimal system.

D. Central Bluetooth Handling

The Bluepy library was used to handle the bluetooth low
energy connection from the central, or the Raspberry Pi. It is a
library written in Python that expands BlueZ’s (official Linux
Bluetooth stack) functionality. This library provides classes to
discover and connect to the device that is advertising services,
and allow the retrieval of the device’s characteristics. The
connection occurs by passing the device’s bluetooth address,
which is unique to every single phone. Then an object of the
Peripheral class is created that will allow the retrieval of
services that the phone is advertising by using the
getServiceByUUID() function and their corresponding
characteristics by using getCharacteristics() function. Once
the characteristics are accessed and stored in variables that are
objects of Characteristics class, it is possible to read or write
to any characteristic – depending on its property – by using the
read() or write(data) functions which are provided in the
Characteristic class [3]. The data that are read and written are
formatted using hexadecimal system.

When the Raspberry Pi receives data via BLE from the
mobile device, it then needs to relay that information to the
Nucleo board doing the DSP. We initially considered several
different communication protocols to connect the Raspberry Pi
to the Nucleo (Ethernet, UART, SPI). Due to hardware and
software library limitations, as well as time constraints, we
settled on using general purpose input/output (GPIO) pins to
connect the two boards. The Raspberry Pi 3 has 30 GPIO pins
(Fig. 6) while the Nucleo F7 has upwards of 100. To maintain
simplicity, we used only 13 GPIO pins on each board for this
communication -- five to represent each of the five different
effects on the user interface, and eight more to represent each
of the presets. The 13 pins on the Raspberry Pi were set up as
output pins. When the Raspberry Pi received which effects
and presets were on/off from the mobile device, it would set
the corresponding GPIO pins HIGH or LOW respectively. The
13 pins on the Nucleo were set up as input pins to allow them
to read the HIGH or LOW values being sent by the Raspberry
Pi. By reading the GPIO input pin levels, the Nucleo would
determine which effects to apply to the audio signal. The
different effect options and algorithms will be discussed in
section III.

Fig. 6: Raspberry Pi GPIO pin diagram

III. EFFECTS

Three types of audio processing effects are available for the
user to apply using the phone application: filters, delay and
distortion. The filter effects consist of three band filters:
low-pass, parametric, and high-pass. The parameters available
to choose for these filters are frequency cutoff, which is
beyond which frequency one desires to cut or let pass, and the
quality control or Q which defines the width of the cut or
boost. Additionally, the parametric filter has a third unique
parameter which is gain, and it is possible to boost or attenuate
the chosen frequency along with the Q parameter. The delay
effect consists of a stereo delay where the left and right
channels have their separate parameters, which are the delay
time, the feedback percentage which specifies how much of
the output signal is fed back to the input, and wet/dry
percentage which specify how much of the processed signal
will be mixed with the unprocessed signal. Finally, the
distortion consists of a nonlinear input-output mapping that
behaves linearly at low input levels but saturates at high input
levels. The output sample value is acquired by raising the
input sample value to the power of the inverse of small, odd
integers.
 The process of applying any effect is identical: the
processor reads a buffer of 1024 samples for each channel by
indexing each individual sample in a for loop, the sample
variable that is currently being read by the processor is
assigned to the value that the effect’s function returns. Each
sample is represented by a floating-point data with a
dynamical range of [-1, 1], which is the standard data format
for most of digital signal processing systems.
 Some information from the DSP book [4] was used only in
the following two sections, filters and delay.

A. Filters

Filters were implemented by using analog designs in
frequency-domain and converting them to Linear Constant
Coefficient Difference Equations (LCCDE) in time-domain.
The reason behind designing filters in time-domain, opposing
to frequency-domain, is because filters in time-domain are
simpler to code and are much more efficient in terms of
computations needed. This result is due to the fact that filters
in time-domain consist of a delay algorithm that delays the

3

input and output sample twice – because a second order filter
was used – at each iteration and multiply different coefficients
for each delayed sample depending on the filter type. It should
be emphasized that the three type of filters employ the exact
same delay algorithm and only the coefficients’ value is the
factor that specifies the filter type.
 The process of converting an analog filter into LCCDE
begins by choosing an analog design of a filter. For instance, a
generic resistor capacitor (RC) second-order low-pass filter
was chosen in our case (Fig. 7), which has the following
transfer function in frequency-domain:

(s) (1)H = V (s)i

V (s)o = 1
s R R C C + s(R C + R C + R C) + 12

1 2 1 2 1 1 1 2 2 2

The next step consists of converting this analog design in

frequency-domain to a digital representation while still in
frequency-domain, and this conversion could be done by using
the Bilinear Z-Transform (BZT), which is a first-order
approximation of the natural logarithm function that is an
exact mapping of the s-plane to the z-plane by using the
following s to z relationship:

 (2) s = 2
T z + 1

z − 1

where T denotes the sampling period. To overcome the poles
that lie outside Nyquist’s range in the s-plane, the BZT wraps
the exceeding poles around the unit circle by using a tan
function (Fig. 8), which is a great approximation of the
analog’s design. By replacing each s with the BZT’s equation,
we get the following digital transfer function in
frequency-domain:

(z) (3) H = a Z + a Z + a2
−2

1 0

 b Z + b Z +12
−2

1
−1

Where the coefficients a and b depend on the filter used.
Once the filter’s representation is obtained in digital
frequency-domain, converting it to a digital time-domain
representation (Fig. 9), or LCCDE, is done by using the
inverse Z-Transform to obtain the following LCCDE:

y(n) x(n) a x(n) a x(n) b y(n) y(n) (4) = a0 + 1 − 1 + 2 − 2 − 1 − 1 − b2 − 2

Translating the LCCDE equation, along with the
corresponding coefficients could be easily done by making a
function that takes the current sample input x(n) as its
argument, and returns the current output sample y(n) which is
computed from the LCCDE Equation 4. Four variables are
needed to store the four delayed samples from the input and
output. The function starts by reading the stored delayed
samples, compute the output y(n), delay the four variables by
one sample for the next iteration and returns the output value.
This process should be duplicated for the right channel of
audio, and it is necessary to create different variables for each
channel. The other two filters use the exact same approach,
however only the coefficients that gets multiplied by each
delayed sample will be different.

Fig. 7: A generic analog RC second-order low-pass filter

Fig. 8 : The BZT’s act of mapping the s-plane to z-plane

Fig. 9: Generic biquad structure of a second-order filter

B. Delay

The delay algorithm (Fig. 10) consists of using a delay line
register to store the samples to be delayed. The samples are
stored in a buffer (Fig. 11), or array that is fixed in size
throughout the entire runtime, otherwise, a lot of errors could
occur such as indexing memory location that are out of bound
which will crash the system. The size should be specified after
the code compiles, but before it runs, because it is necessary
for the processor to know how much memory should be
allocated for that buffer. The buffer’s size corresponds to the
maximum amount of delay time desired, and should be
expressed in terms of the sample rate, because different
systems have different sample rate. It is computed by choosing
the maximum time in seconds, which corresponds to x in the
following equation:

 (5)aximum delay (samples) x (seconds) sample rate () m = * seconds
samples

4

Fig. 10: Delay system diagram

Fig. 11: A delay buffer with read a write indices

Two index variables should be declared as integer variables
and they will serve as the array’s read and write index (Fig.
11). At this point, it is necessary to treat the buffer as a
circular buffer to save memory space, especially since the two
indexes will be constantly incrementing their value by one for
each iteration. A circular buffer is a buffer where its two
indexes wrap to the beginning of the buffer once any of them
reach the end of the buffer, which is achieved by the following
pseudocode:

rite index write index 1; (incrementing the write index) w = +

f (write index = maximum delay) write index 0; i > =

The read index follows the same approach. The write index
will copy all the samples to the new allocated buffer whereas
the read index will read the stored value depending on the
delay time chosen. This fact means that the write index will
always be incrementing by one, and wrapping if necessary,
however, the read index could jump to different values,
especially if the user changes the delay time during playback.
Whenever this change happens, the read index’s new value
should equal to the write index’s value minus the new
specified delay time (in samples), as shown in the following
pseudocode:

ead index write index delayInSamples; r = −

The delayInSamples value corresponds to a conversion of the
specified delay time in seconds into samples. Since it is
possible that the new read index’s value to become negative, it
is necessary to check if read index’s value is negative after
applying that code, and in case it is, it is wrapped back to its
equivalent positive value in the circular buffer by adding the
maximum delay time value, as shown in the following
pseudocode:

f (read index 0) read index read index maximum delay; i < = +

In addition to the delay time parameter, the user could

specify the feedback and wet/dry percentages. The feedback
percentage corresponds to how much percent of the output
sample’s value should be fed back to the input, which also
means fed back to the buffer again (a feedback of 100%
corresponds to playing the delayed sample infinite times). The
wet/dry percentage corresponds to the mix between delayed
and non delayed signal. For example, a wet/dry value of 30%
will play 30% of the delayed sample’s value y(n) and will be
mixed with 70% of the non delayed input sample’s value
x(n). The LCCDE that relates the feedback parameter and the
input and output relationship that the delay function will return
is the the following equation:

(n) (n) feedback (n) (6) y = x − D + * y − D

To apply the wet/dry parameter’s value, the value that the
delay function will return should include the wet/dry amount,
as shown in the following pseudo code:

eturn (1) x(n) (n);r − 100
wet/dry

* + 100
wet/dry

* y

Note that in this pseudo code, x(n) denotes the input variable
that is passed to the delay function, or in other words, it is the
sample that the processor is currently reading, and y(n) is the
value of the delayed signal that the delay function computes
using Equation 6.

Because the delay system is stereo, it is necessary to repeat
this entire process twice for each channel, and because the
user could choose different parameters for each channel, it is
necessary to allocate two buffers for each channel, as well as,
duplicate all the variables used earlier. Depending on the delay
time chosen, it is possible to achieve a flanger effect by
choosing a delay time between 1ms and 10ms, or a chorus
effect by choosing a delay time between 10ms and 20ms.

C. Distortion

In the analog world, distortion is often caused by an
overdriven transistor or tube. While the inner workings of
such devices deserve a paper (or many) of their own, they can
be very simply be described as non-linear devices whose
nonlinearity increases with increased incoming voltage. At
low voltages, the behavior is essentially linear. It is only as the
voltage increases that saturation occurs. If great precision is
not a concern, these devices can be modeled in the digital
world.

5

Fig. 12: Input-output relationship of simple audio pass-through

Fig. 13: Input-output relationship of audio at various gain levels

Fig. 14: Input-output relationship of audio with cube root distortion

In order to visualize non-linear effects, one useful tool is
simply a 2-dimensional graph of the input-output relationship.
For example, a simple audio pass-through (Fig. 12) would
appear as the line , where is the incoming audio and y = x x

is the outgoing audio. We will assume the sample value y
range is .− , 1] [1

In this representation, the gain is simply the slope of the
graph. Increasing or decreasing the gain (Fig. 13) simply
increases or decreases the slope of the graph.

This can be easily verified. For example, at the input
sample value of , when the gain is , an x = 1 ain − dB G = 6
output value of . The same value does not map to an .5 y = 0
output at , for such a value would be outside the ain + dB G = 6
digital ceiling.

As previously mentioned, the distortion algorithm creates a
nonlinear input-output relationship (Fig. 14). Specifically, the
relationship creates a distortion not unlike that y = x1/3
created by a transistor.

Clearly, this has created a nonlinear input-output
relationship. Close to zero, the relationship seems to be linear
with slope , that is, the gain is being increased. With m > 1
input , the relationship seems to be linear as well, .5 x| | > 0
albeit with slope , that is, the gain is being decreased. m < 1
Between these two extremes, the graph is nonlinear. This
change in applied gain as a function of input level is what
creates a distortion sound.

It is perhaps worth noting that not every type of distortion
can be modeled with a simple input-output equation. Although
this type of algorithm is efficient and can accurately model
many analog distortions, the output of more complicated
algorithms may rely on the input as well as past inputs and
outputs. In other words, the input-output equation may change
depending on if the sample is, for example, part of a transient
as compared to a sustained sound.

One may wonder at this point about the significance of the
seemingly arbitrary cube root. Why not a square root design?
The answer is more pragmatic than profound; when applied to
negative numbers, the square root algorithm produces
complex numbers. If so desired, one can modify the algorithm
to account for this, such as in the following pseudo-code:

nput bs(input)/input pow(abs(input), 1/2); i = a *

A parameter that may be introduced is perhaps analogous

to the “Drive” knob on a guitar amplifier. As the algorithm
uses reciprocals of greater and greater odd integers, the signal
distorts more and more. As the integer in question continues to
increase, the distortion of the output signal intensifies (Fig.
15). In the limit as this integer approaches infinity, the
input-output relationship begins to resemble a square wave. At
this point, the audio would no longer be recognizable. The
algorithm, even at its mildest setting, produces a noticeable
effect on a pure sine tone (Fig. 16).

6

Fig. 15: Input-output relationship of audio with various root distortions

Fig. 16: Effect of distortion on pure sine tone

Fig. 17: Sine and distorted sine waves in the frequency domain

In the time domain, the effect can perhaps be described as
“beefing up” the sine wave. At every point on the wave, the
magnitude of the distorted sine tone is equal to or greater than
that of the original sine tone.

In the frequency domain (Fig 17), this adds frequencies
that are integer multiples of the frequency of the inputted sine
wave. For example, if the input was a sine wave at

, the distorted sine wave would contain00Hzf 0 = 1
frequencies of etc.00Hz, 200Hz, 300Hz, 1

Upon implementing this algorithm, however, it was found
that there is no efficient way to vary the power or root of a
float number efficiently. Instead, this parameter was fixed at 3.
The “drive” parameter then applied a pre-gain, and, if this
resulted in sample values higher than 1 or lower than -1, they
were simply clipped (Fig. 18). Such an operation looks like
this in pseudo-code:

utput pow(input ain, 3); o = * g

f output 1, then output 1; i > =

f output , then output ; i < − 1 = − 1

This provided an acceptable approximation and was much

more computationally efficient. While there are many ways to
produce audio distortion in the digital domain, this algorithm
and its approximation best met the required specifications.

Fig. 18: True distortion algorithm vs. approximation

IV. ADAPTIVE FILTERING

A. Basic Concepts

Adaptive filtering is traditionally described as a system with
a filter in it that changes based on a set of variables that is
passed into the system which then results in an optimization of
the filter. Over time the filter will improve and become more
accurate to the needs of the system which then will produce
the desired result. This is usually done by calculating the mean
square of the error signal which can then be used to represent
a cost function which is just a way to measure how well the
filter is doing to modify the signal and reach an ideal. This

7

error is derived from comparing the output signal to the
desired signal. Eventually this error value will approach zero
which means that the filter will only make minimal
adjustments as long as the input signal does not have any
significant variations or change in pattern.

For this project’s implementation of adaptive filtering, the
ideal signal, or desired signal, is the input to the system while
the output signal is the result of the system’s filtering. By
changing the transfer function of our system there will
eventually be a near equality between the input and output of
the system.

B. Theory

Although the result of this project is a perceived adaptive
filter, the theory behind it is a transfer function trick that is
done without any feedback other than measurement of the
output signal. Because signals can be multiplied, divided, and
inverted in the frequency domain, there are clever
mathematical manipulations that can be made to force equality
between the input and output of the system. Initially the
system can be described by the input, output, and transfer
function H:

nput H Output (7) I * =

In this case the transfer function H is the effect of the room
on the input signal when it is played through the speakers. The
input is initial signal that is put on the wire going into the
speakers and the output is what is measured by the
microphone after the room has affected and filtered the sound.
The transfer function as well as the inverse transfer function of
this system can be determined by simple division, again, in the
frequency domain. The result follows below:

 (8)H = Input
Output

 (9)H−1 = Input
Output

With the well defined calculation of the transfer function,

the inverse of the transfer function can be found and
multiplied by the input signal so that the transfer functions
cancel and leave only the input and the output left in the
equation:

nput H H Output (10) I * −1 * =

nput Output (11) I =

Because of the way that this multiplication works, the
output exactly equals the input and the signal should be
theoretically perfect when the output and input are compared.
As this formula was implemented on the STM32 Nucleo F7
hardware it became increasingly clear that this theory does not
work quite the same in practice. The Nucleo F7 board is
pictured here (Fig. 19) for the reader’s visualization.

Fig. 19: STM32 Nucleo F7 development board

C. Implementation

The initial implementation of this system was first tested in
MATLAB on finite data sets that consisted of an input file and
a filtered version of that input file to act as the microphone
signal. This was primarily to test the theoretical mathematics
and to confirm that this solution architecture really could work
on audio signals. MATLAB allows for quick and painless
operations on complex values and easy transition between the
time and frequency domain which allowed the team to have a
solid understanding of whether or not the algorithm would
work or not. After testing and confirming on multiple sets of
input audio the team moved the solution onto the Nucleo F7
board for implementation in the C programming language.

When moving from the MATLAB testing to the embedded
systems implementation there are a number of items that the
team had to take into consideration in order to have a
functional system. The first of these considerations is that the
system must be real-time and be able to receive audio, apply
the adaptive algorithm, and send audio back to the analog
world without any breaks or pops. This means that the
algorithm must process the incoming samples faster than they
arrive so that they can be output immediately. Another
consideration that is important to the success of the code
conversion is the fact that the data structures in C are not
easily set up to handle complex values and therefore all
operations, even simple elementwise operations, must be
carefully set up so that the data is not altered in ways other
than intended while going through the algorithm. This is
particularly important in inverting the transfer function and
multiplying the inverse transfer function and the input signal
together. In addition to the real-time and complex factors of
the system, another parameter that must be optimized is the
size of the input and output audio buffers as well as the
corresponding size of the Fourier transforms that must be
applied to these buffers. For this particular implementation,
the algorithm would run when the size of the buffer was set to
be 512 samples long with a sampling rate of 48 kHz. Using
larger buffer sizes made it difficult to push samples through
the system in real time and therefore a smaller buffer size had
to be used to eliminate any drops in the audio.

8

Fig. 20: Radix-8 butterfly FFT algorithm diagram

The Fast Fourier Transform that was used to convert the
time based samples into the frequency domain and back was
from the CMSIS DSP library. This uses a floating point
precision function to calculate the fourier transform or inverse
fourier transform of a set of complex values where the real
values are the even numbered indices and the complex values
are the odd numbered indices. The function that operates on
the audio buffer takes in a pointer to the instance of the
transform, a pointer to the data that is being operated on, and
two flags that indicate whether or not the fft will be a regular
or reverse fft and if the bits are reversed or not. This function
is called every time there is a transition from time domain to
frequency domain or back. Part of this algorithm is pictured
above (Fig. 20) and illustrates the number of operations that
must happen for just 8 bits of data to be transferred into the
frequency domain.[5]

For more specifics on where the FFT is used, it is used
immediately to translate both input audio and mic audio into
the frequency domain. While in the frequency domain, the
multiplication is done and then once the output signal has been
determined, the FFT is used again, this time in reverse, to
convert the output signal to time domain. These computations
are very intensive for the hardware and require a lot of
processing power to complete which is a major factor as to
how the code is written and implemented. Some of the
calculations must be done every single time the audio buffer is
taken in and others are only done when necessary.

Going through each step of the algorithm, there are some
clear points where computational complexity could be reduced
by only allowing an FFT to be taken at regularly spaced
intervals. The sampling of audio and output of audio has to
happen every single time the program loops so there’s not
much room for reduction there. However, the calculation of
the transfer function can be delayed because of the fact that
the transfer function will always be stored in memory and
won’t be overwritten with the next set of input audio. The
other reason that the transfer function doesn’t need to be
computed every time is because in the actual application of
this system, the transfer function will not be changing quickly
or drastically so there would be no reason to calculate it with
every set of samples. Given this, the implementation that was
chosen is to create a sub-counter that waits until it is reset at a
large value before recalculating the transfer function.

D. Challenges

Though this implementation is theoretically and
mathematically robust, there are a number of factors that come
into play and affect how the system reacts to the microphone
input. This has to do with the way that the microphone in the
room is sampled, how large of a transfer function is used to
calculate the new output, and a few other computational
factors that make it difficult to qualitatively hear quick
changes in the filtering system.

When the system receives microphone input to calculate the
transfer function by comparison to the ideal signal, the system
and math assumes the same amplitude between both signals
and does not account for how much input is coming into the
microphone. A possible solution to this could be implementing
a normalization function for the input so that all audio levels
would be the exact same. However, this could harm the
quality of the audio and result in a more low fidelity system
which would have the opposite effect of the goal of the
system. Instead, the solution that was used to fix the levels
was to use a pre-amplifier to bring the microphone to a correct
level before inputting the signal into the hardware. This
calibration has to be done depending on what microphone is
used in the system but is generally not too difficult to do just
by listening closely to if the audio is being affected by the mic
placement relative to the speakers.

The primary issue that affects the filter’s performance is a
combination of the size of the FFT that is used i the algorithm
and the computational complexity of the algorithm as a whole.
The reason that the FFT size is only 512 samples long is
because the system can’t process the audio and output it in a
continuous stream when longer buffer sizes are used. This
could be solved by using a 16 bit FFT instead of a floating
point FFT which would help with the number of computations
but would hurt the fidelity of the audio. The problem with
having an FFT of this size is that it is particularly short and
because it’s only able to be updated so infrequently because of
the inability of the system to update every cycle, the calculated
transfer function is often taken from input that does not give a
good representation of the transfer function of the room which
means it may take another update to hear any difference or
may make the difference very subtle and difficult to hear.

Possible solutions to this problem could include getting
hardware that is fast enough to make all the necessary
calculations on larger FFTs while updating at a faster rate in
order to keep the transfer function relevant to the signal. It
could also be beneficial to average the transfer functions that
are calculated over time so that even if there a few transfer
functions that are not quite representative of the room, the
overall transfer function will still be effective when applied to
the input signal.

We found that after hitting the computational limit of the
Nucleo F7 many times it was difficult to add more tasks to the
list of things that might have to be done within a single cycle
such as output data or communicate with another board
entirely. For this reason, it was difficult to obtain output from
the board that is from a real-time test and not from a
MATLAB simulation. The bottom line is that this particular
algorithm either needs to be optimized and changed to run on
the Nucleo F7 or needs to be run as it is on a faster processor.

9

Fig. 21: High-level block diagram

V. RESULTS

A. Overall Project Outcome

The Adaptive Speakers project was a success in that it
evolved and changed scope to become a reasonable product
given the time and scope constraints. The primary functions of
the two different aspects of the project worked in a
satisfactory way and could be combined into a workable and
demonstration ready product. The high level block diagram of
how the final system works can be seen above (Fig. 21). The
effects section of the project produced 960 different
combinations of effects that could be applied to any input in
real time. The adaptive filtering aspect of the project was able
to filter input in real time using a microphone in the room and
applied subtle yet audible filtering to the audio depending on
where the microphone was moved. There are still many
optimizations to be made to the project but given the time
constraints and scope of the course, the final product was
satisfactory.

B. Plan Modifications

Throughout the project process there were many times that
the solution architecture was changed due to finding better
solutions, having difficulty in communication implementation,
following instructor recommendations, and reducing the scope
of the project and class. In an unfortunate series of events, the
project team tried many forms of communication between the
Nucleo F7 boards as well as the Raspberry Pi 3. These forms
included but are not limited to SPI, UART, ethernet, and
bluetooth. There were a number of problems with finding
correct information and documentation about how these
communication protocols worked with the Nucleo boards and
this proved quite difficult to troubleshoot. This resulted in
multiple drastic changes to the solution architecture of the
entire system and eventually split up the two Nucleo boards so
that they do not communicate with each other at all. This
made the overall product much more robust and consistent but
eliminated some flexibility and features from the product.

The initial design for the adaptive speakers unit involved
the two Nucleo connected through UART while the Raspberry
Pi was connected to the first Nucleo via ethernet and
connected to the iOS mobile device via bluetooth. A more
detailed account of this preliminary design is described in the

flowchart below (Fig. 22). The team found that they could
effectively implement the bluetooth connection to the
Raspberry Pi but there was no clear way to implement an
ethernet connection using the Nucleo. The

Fig. 22: Preliminary signal flow diagram

UART connection between the Nucleo boards was
documented and usable but because the initial design was
passing audio packets between the two devices, the connection
had to be perfect. The UART connection between the Nucleo
was abandoned because of an issue of dropped packets which
put holes in the audio stream and therefore affected the way
that the algorithms processed the audio data and determined
the adaptive filter. The block diagram below shows the
original plan for the device communication.

With the option of ethernet connection between the Nucleo
and Pi looking bleak, the team tried an implementation of SPI
between the two devices because the data only needed to
include controls data and nothing more. During the second
week of controls testing using SPI the team discovered an
issue with the stability of the data being passed over the wire
and it was recommended that we use a different protocol due
to the fact that the functions for SPI on the Nucleo were not
well documented, easy to understand, or supported by other
developers who also complete projects on the Nucleo.

It should also be noted that at this point there would be no
more audio data passed between devices as a simple splitter
was being used to put input into both of the Nucleos via clever
wiring. This eliminated the need for any communication
between the Nucleos and insured that the audio stream would
be consistent between the two devices as well as within the
two devices.

At this point the solution architecture has split the project
into two parts and has left the effects Nucleo unable to receive
controls from the Raspberry Pi. To remedy this, the team
developed a 13 pin GPIO configuration that could do an
effective one-way control communication protocol from the Pi
to the Nucleo. This control system was significantly more
limited than the planned serial communication but because of
time constraints this was the best option to insure the
functionality of the device. There would not have been enough
time to effectively implement our own communication
protocol and debug and test the system so we reduced the
scope of the project and made sure that what we did
implement worked consistently and with a non-trivial
specification.

In this way, the project evolved from a multi-device
communication network into a simple GPIO controlled effects
rack that is functional but not necessarily as customizable or
flashy as a packeted communication controls system.

10

C. Future Steps and Development

With the project in its current state, there are many
directions and opportunities that the team could take with the
technology developed in this project. Because adaptive
filtering is only available within specific products on the
market, having a device or piece of software that can be
implemented on any system in a modular fashion could
change the way that consumer set up their audio systems.

As a hardware product, the adaptive system would need to
be refined to handle the heavy workload that the algorithm
demands so that consumers could have a simple and easy
experience with the unit. The biggest roadblock after the
refinement of the algorithm would be improving the quality of
the ADC and DAC converters on the unit so that they could
provide a much higher fidelity experience rather than bit crush
incoming and outgoing audio.This is yet another reason why it
might be effective to transfer this technology to a software
platform to develop it further, allow for increased modularity,
and give it an easy way to spread to users with minimal
production cost.

As a pure software product, the adaptive speakers module
would run as a plugin or standalone program on a user’s
computer. This program would be placed on the master output
audio stream of the machine and would take input from a
microphone that users would have to route through the
application. For users with audio interfaces this could include
microphones that are connected via DAC and ADC converters
and for users that only have access to their laptop it could just
use the built in microphone to detect the sound of the room.
The already modular technology becomes even more modular
when it can be fit onto any piece of hardware through flexible
programming. This type of software is immensely popular
and there is a huge market for downloadable DSP as shown by
just a few examples in the following image (Fig. 23).

Another advantage to using this technology as a pure
software product is that the algorithm no longer needs to
handle the analog to digital conversion, the low quality that
comes with using a bad converter, or any kind of
multithreading that would take place to make the program run
more smoothly. All of these factors make the software much
more computationally feasible and practical for any user in
any demographic.

Fig. 23: Distributed studio technology examples

With this in mind, there are many applications of this
technology that could work as a software or hardware DSP
implementation. Because this technology adapts to any space
it is used in, it can be used for live concerts, recording studio
settings, and even for simple home acoustics treatment. A
more robust iteration of this technology could provide an
alternative to paying for expensive acoustic treatments by
simply identifying exactly what the space does to the sound
and then eliminating it.

As more development offers are communicated to the team,
there are further options that we could take as developers to
use this technology in the real world. The team is excited to be
able to apply the project to practical uses and looks forward to
seeing a more refined version of Adaptive Speakers on the
market.

VI. CONCLUSION

The Adaptive Speakers project was successfully
demonstrated at the University of Michigan’s 2018
Engineering Design Exposition. The final product consisted of
a microcontroller system that takes input audio, filters it in
either a custom or adaptive way, and returns the output audio
to be played through speakers. The adaptive filtering mode
relies on a microphone in the room while the custom filtering
and effects happen through an iOS user interface that sends
signals to control the parameters of the system.

The effects implemented in this system include three types
of equalization filters, distortion, and delay. The effects can be
turned on independent of each other and will change
parameters based on which preset is selected. The combination
of these effects allow for 960 different custom effects to be
created. The system is robust and can take any signal as input
and can be used for live performance.

The adaptive filtering mode works in a subtle way but still
completes the task and proof of concept of changing the
output of the audio based on the detection of the room by the
microphone. On a large scale, when the microphone receives
mostly low frequencies, the low frequencies will be filtered
down to their original levels. When the microphone receives
more high frequency content, the system will reduce the
amplitude of the high frequencies in order to compensate for
the discrepancy between the input signal and the signal
received by the microphone.

Through many design and solution architecture changes,
the team found a way to successfully connect the necessary
elements to create a functional product. The changes from
ethernet to UART to SPI to GPIO communication got
progressively simpler but this allowed the team to create a
more robust solution without the complications of packeting
and creating new communication protocols to use on the
Nucleo boards. Along with the simpler communication
protocols came limitations of the software and controls system
but this also offered a well defined system that was quick to
debug and worked consistently.

11

Overall this project was a matter of finding the limits of
the available hardware, adjusting the scope and goals of the
product, and pushing those limits to create a product that is
both a proof of concept as well as marketable in the up and
coming adaptive filtering field. The team enjoyed pushing the
envelope in this technology and had a thorough educational
experience in creating and completing this project.

ACKNOWLEDGMENTS

We would like to acknowledge Professor Hun-Seok Kim,
Dr. Kurt Metzger, Siddharth Venkatesan, and Carl Steinhauser
for their support and advice throughout the entire project.
Their guidance and instruction provided a solid foundation for
us to build on to complete our project and success would not
have been possible without them. Thank you for offering your
knowledge and expertise to the class!

REFERENCES

[1] K. Astebol. " Intro to Bluetooth low energy and BLE development with
Nordic Semiconductor" YouTube, Oct 6 2016. [Video file]. Available:
https://www.youtube.com/watch?v=pLgnHuGI69s&t=1257s. [Accessed:
21-Feb-2018].

[2] Apple Inc, “Core Bluetooth,” developer.apple.com. [Online]. Available:
https://developer.apple.com/documentation/corebluetooth. [Accessed:
22-Feb-2018].

[3] I. Harvey, “bluePy,” GitHub. [Online]. Available:
https://github.com/IanHarvey/bluepy [Accessed: 10-Feb-2018].

[4] W. Pirkle, Designing Software Synthesizer Plug-Ins in C : For
RackAFX, VST3, and Audio Units, 1st ed. Focal Press, 2014.

[5] ARM-software, “ARM-software/CMSIS,” GitHub. [Online]. Available:
https://github.com/ARM-software/CMSIS/blob/master/CMSIS/DSP_Lib
/Source/TransformFunctions/arm_cfft_f32.c. [Accessed: 20-Apr-2018].

[6] Acoustics Insider. (2018). My Room's Frequency Response Seems Very
Uneven — Acoustics Insider. [online] Available at:
http://www.acousticsinsider.com/frequency-response-uneven/ [Accessed
20 Apr. 2018].

[7] Gikacoustics.com. (2018). What Are Room Modes - GIK Acoustics.
[online] Available at:
http://www.gikacoustics.com/what-are-room-modes/ [Accessed 20 Apr.
2018].

TEAM CONTRIBUTIONS

A. Sophia Mehdizadeh

Sophia Mehdizadeh worked on prototyping and testing the
adaptive filtering algorithm in MATLAB. She then moved to
the Raspberry Pi where she worked on developing and
debugging a communication protocol between the Pi and the
Nucleo board. Sophia also wrote the Python code on the
Raspberry Pi to relay the data coming from the mobile device
to the Nucleo via GPIO.

B. Jack Nonnenmacher

Jack Nonnenmacher contributed to writing, debugging and
testing the MATLAB prototypes of the adaptive filter
algorithm, the distortion algorithm, and other experimental

algorithms. He then wrote, debugged and tested prototypes for
the adaptive filter algorithm and the distortion algorithm in C
to be used for the hardware implementation. Jack also
provided audio files to be used to test various algorithms used
in the project.

C. Socrates Papageorgiou

Socrates Papageorgiou is responsible for the solution
architecture and code implementation of both the adaptive and
effects section of the Adaptive Speakers module. His primary
focus was on writing and testing C code on the STM32 Nucleo
F7’s as well as working to develop communication protocols
between the different devices. Socrates also handled and
orchestrated the live demonstration setup as well as provided
the necessary materials and audio engineering knowledge to
successfully display the final product.

D. Abdulrahman Shehadeh

Abdulrahman Shehadeh worked on establishing a
bluetooth low energy connection between the phone app and
the Raspberry Pi. He was also responsible for developing the
phone app’s functionality and GUI using Swift programming
language and Xcode IDE. Additionally, Abdulrahman
designed and implemented the three filters and the stereo
delay algorithms in C code.

12

